Acta Crystallographica Section E

Structure Reports

Online

ISSN 1600-5368

Xiao-Tao Deng, ${ }^{\text {a }}$ Xiao-Yan Wang ${ }^{\mathrm{a}, \mathrm{b} *}$ and Cheng-Gang Wang ${ }^{\text {a }}$
${ }^{\text {a }}$ Department of Chemistry, Central China Normal University, Wuhan, Hubei 430079,
People's Republic of China, and ${ }^{\text {b }}$ Chemistry and Biology Department, West Anhui University, Liu an, Anhui 237000, People's Republic of China

Correspondence e-mail:
wangcg23@yahoo.com.cn

Key indicators

Single-crystal X-ray study
$T=292 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.006 \AA$
R factor $=0.036$
$w R$ factor $=0.097$
Data-to-parameter ratio $=17.3$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
Bis(hexaethylpararosanilinium) hexamolybdate

The title compound, $\left(\mathrm{C}_{31} \mathrm{H}_{42} \mathrm{~N}_{3}\right)_{2}\left[\mathrm{Mo}_{6} \mathrm{O}_{19}\right]$, contains an $\left[\mathrm{Mo}_{6} \mathrm{O}_{19}\right]^{2-}$ hexamolybdate anion, which is built up from six distorted MoO_{6} octahedra sharing common edges and one common vertex at the central O atom, and two hexaethylpararosaniline cations to balance the charge. The Mo-O distances lie in the range 1.670 (3)-2.325 (2) \AA.

Comment

Polyoxometalates are a rich class of inorganic cluster systems that are remarkable for their molecular and electronic structural diversity and their significance in catalysis, medicine, and materials science (Gouzerh \& Proust, 1998; Hill et al., 1998; Pope \& Muller, 1991). We report here the crystal structure of one such compound, (I).

(I)

The asymmetric unit of (I) consists of a hexamolybdate dianion and two hexaethylpararosaniline cations (Fig. 1). The hexamolybdate subunit $\left[\mathrm{Mo}_{6} \mathrm{O}_{19}\right]^{2-}$ is highly symmetrical and can be described as an octahedral arrangement of MoO_{6} octahedra. Thus, each octahedron shares an edge with four octahedra and a vertex with the fifth octahedron. Consequently, there are six terminal oxo-groups, twelve doubly bridging oxo groups, and one μ_{6} oxo group at the center of the cluster. The Mo-O distances are significantly different due to multiple bonding character and range from 1.670 (3) to 2.325 (2) \AA, which are in agreement with those reported for $\left(\mathrm{Bu}_{4} \mathrm{~N}\right)_{2}\left[\mathrm{Mo}_{6} \mathrm{O}_{19}\right]$ (Dahlstrom \& Zubieta, 1982). Weak C$\mathrm{H} \cdots \mathrm{O}$ interactions are observed in the crystal structure of (I) (Table 2).

Experimental

A solution of $\mathrm{Na}_{2} \mathrm{MoO}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}(2.42 \mathrm{~g}, 10 \mathrm{mmol})$ in $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{ml})$ was mixed with acetonitrile (40 ml), and $\mathrm{HCl}(37 \%, 5 \mathrm{ml})$; ethyl violet

Received 4 July 2006
Accepted 25 July 2006
($2.61 \mathrm{~g}, 5 \mathrm{mmol}$) in water (25 ml) was added. The resulting mixture was refluxed for 2 h at 348 K . After filtration, the pale yellow solution obtained was allowed to stand at room temperature. Well shaped yellow block-like crystals were obtained by slow evaporation of the solvent over a period of about two weeks.

Crystal data

$\left(\mathrm{C}_{31} \mathrm{H}_{42} \mathrm{~N}_{3}\right)_{2}\left[\mathrm{Mo}_{6} \mathrm{O}_{19}\right]$
$M_{r}=1792.99$
Triclinic, $P \overline{1}$
$a=12.4002(13) \AA$
$b=17.4038(18) \AA$
$c=17.7311(18) \AA$
$\alpha=93.366(2)^{\circ}$
$\beta=109.955(2)^{\circ}$
$\gamma=98.015(2)^{\circ}$

Data collection

Bruker SMART CCD area-detector	32369 measured reflections
\quad diffractometer	14494 independent reflections
φ and ω scans	10125 reflections with $I>2 \sigma(I)$
Absorption correction: multi-scan	$R_{\text {int }}=0.061$
$\quad(S A D A B S ;$ Bruker, 2000)	$\theta_{\max }=26.5^{\circ}$
$\quad T_{\min }=0.679, T_{\max }=0.778$	

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.036$
$w R\left(F^{2}\right)=0.097$
$S=1.09$
14494 reflections
838 parameters
H -atom parameters constrained

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0446 P)^{2}\right. \\
& \quad+0.0065 P] \\
& \text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }=0.002 \\
& \Delta \rho_{\max }=0.74 \mathrm{e}^{-3} \mathrm{~A}^{-3} \\
& \Delta \rho_{\min }=-0.64 \mathrm{e}^{-3}
\end{aligned}
$$

$$
\begin{aligned}
& V=3538.4(6) \AA^{3} \\
& Z=2 \\
& D_{x}=1.683 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation } \\
& \mu=1.10 \mathrm{~mm}^{-1} \\
& T=292(2) \mathrm{K} \\
& \text { Block, yellow } \\
& 0.38 \times 0.24 \times 0.24 \mathrm{~mm}
\end{aligned}
$$

32369 measured reflections
4494 independent reflections
$R_{\text {int }}=0.061$
$\theta_{\text {max }}=26.5^{\circ}$

Table 1
Hydrogen-bond geometry ($\AA,{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
C6-H6 . ${ }^{\text {O19 }}{ }^{\text {i }}$	0.93	2.53	3.256 (5)	135
$\mathrm{C} 7-\mathrm{H} 7 A \cdots \mathrm{O}^{\text {ii }}$	0.97	2.45	3.035 (5)	118
$\mathrm{C} 17-\mathrm{H} 17 \mathrm{~B} \cdots \mathrm{O}^{\text {i }}$	0.97	2.47	3.418 (5)	166
C27-H27A . O 15	0.97	2.50	3.346 (5)	146
C37-H37. . O16 ${ }^{\text {iii }}$	0.93	2.53	3.356 (5)	149
C38-H38A \cdots O11 ${ }^{\text {iv }}$	0.97	2.42	3.260 (5)	145
C58-H58A . ${ }^{\text {O }} 18^{v}$	0.97	2.53	3.336 (6)	141

Symmetry codes: (i) $x-1, y-1, z$; (ii) $x, y-1, z$; (iii) $-x+1,-y+1,-z+1$; (iv) $-x+2,-y+1,-z+1 ;(\mathrm{v})-x+2,-y+2,-z+1$.

The H atoms were positioned geometrically and constrained to ride on their parent atoms, with $\mathrm{C}-\mathrm{H}=0.93-0.97 \AA$ and $U_{\text {iso }}(\mathrm{H})=$

Figure 1
The asymmetric unit of (I), showing 50% probability displacement ellipsoids and labelling of the non- H atoms. H atoms have been omitted for clarity.
$1.5 U_{\text {eq }}(\mathrm{C})$ for methyl H atoms and $1.2 U_{\text {eq }}(\mathrm{C})$ for others. The U^{ij} components of atom C59 were approximated to isotropic behaviour.

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1997); software used to prepare material for publication: SHELXTL.

This work was supported by the Hubei Key Laboratory of Novel Chemical Reactor and Green Chemical Technology (grant No. RCT2004011).

References

Bruker (1997). SHELXTL. Version 5.10. Bruker AXS Inc., Madison, Wisconsin, USA.
Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
Dahlstrom, P. \& Zubieta, J. (1982). Cryst. Struct. Commun. 11, 463-466.
Gouzerh, P. \& Proust, A. (1998). Chem. Rev. 98, 77-79.
Hill, C. L. (1998). Chem. Rev. 98, 1-6.
Pope, M. T. \& Muller, A. (1991). Angew. Chem. 30, 34-37.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

[^0]: (C) 2006 International Union of Crystallography All rights reserved

